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Abstract--The rate of thinning of a film trapped between a drop approaching its homophase 
according to a model incorporating hydrodynamic coupling is dramatically different from earlier, 
uncoupled models. Implications for film thinning of microflows analyzed in the preceding paper 
are here investigated using similar analytical methods to derive a nonautonomous, nonlinear 
evolution equation for the film thickness which has been solved numerically under a variety of 
conditions after asymptotic analytical behavior has been extracted. The applied force squeezing 
the film, together with the initial motion in the three phases, determines the rate of film thinning 
in a complicated manner through the coupling parameter R = (pA#a/pn#n) t/2. Experimental 
observations that normal drop circulation enhances thinning, whereas reversed drop circulation 
can cause thickening, are predicted theoretically for the first time. Films much more viscous than 
their surroundings are found to thin faster than the converse case, a conclusion at odds with.off- 
hand intuition but substantiated experimentally; both classes of systems behave differently, often 
qualitatively so, from predictions of hydrodynamically decoupled systems, and in particular 
film thinning rates are generally faster because of less resistance to drainage, although the limit of 
vanishing R does recover the special case of Reynolds' model. For short times, films are shown 
analytically to thin more rapidly if there is initially outward film motion and normal drop circula- 
tion, but with decreasing effectiveness as R increases, in contrast to the effect of R for intermediate 
and longer times; if there is initially inward film motion, thickening tendencies are enhanced by 
reverse drop circulation but with decreasing effectiveness as R increases. These and other detailed 
conclusions, most predicted theoretically for the first time, are not only in qualitative agreement 
with experimental observations, they are in quantitative agreement with available data. 

1. INTRODUCTION 

In the preceding paper (Reed, Riolo & Hartland 1974) the effect of flow in the adjacent 
phases on drainage within a fluid film was discussed in terms of analytical solutions in the 
three phases. The many effects of such hydrodynamic coupling on the variation of film 
thickness with time are considered in the present paper, a matter of paramount importance 
in coalescence. In turn, coalescence has important practical implications for fields as 
disparate as atmospheric physics (Mason 1957) and classical unit operations in chemical 
engineering (Hanson 1971). 

Using the microscopic solution and analytical methods similar to those employed in the 
previous paper, a film-thinning equation has been derived from the macroscopic equations. 

437 



438 X. B. REED, JR., E. RIOLO and  s. HARTLAND 

This nonlinear, nonautonomous ordinary differential equation has been solved numerically 
for a variety of circumstances, including a range of initial film thicknesses and applied 
forces acting on the film. More importantly, inasmuch as the effect of hydrodynamic coup- 
ling between phases has been incorporated in the model, the role of different initial flows 
within the three phases has been assessed for three classes of physical systems: those in 
which, crudely speaking, the film is much more, comparably, and much less, viscous than 
its surroundings. 

If the film is the more viscous phase, then thinning is more rapid than the converse case, 
but aside from the case of effectively infinitely viscous surroundings--in which case 
Reynolds' model is recovered--results differ, often dramatically, generally qualitatively, 
and always quantitatively, from those presuming immobile interfaces. Moreover, con- 
clusions based upon older, decoupled models can even be opposed to those for coupled 
systems having clean interfaces, for not only do the physical properties of the fluid in the 
film affect flow there, as well as serving to determine the effective force and film dimensions, 
and not only must flow within the film accommodate itself to flow within the contiguous 
phases, but the converse holds as well, with the result that physical properties in the drop 
and its homophase affect not only the same overall system parameters and the flow within 
adjacent phases, but the boundary conditions at the interfaces which act as compatibility 
conditions on simultaneous motion in all three phases. Said more succinctly if less precisely, 
there is hydrodynamic coupling influencing flow in all three phases simultaneously, which 
in turn influences macroscopic behavior in a still more complicated manner. 

Many qualitative predictions of the theory are novel and most have been observed 
experimentally and understood intuitively, if not predicted theoretically. As a further test 
of the theory, some available experimental results (Hartland 1967; Mackay & Mason 1963) 
have been satisfactorily predicted using the physical properties of the specific systems, their 
initial film thicknesses, and the estimated initial motions in drop, film and homophase. 

2. M A C R O S C O P I C  B A L A N C E S  A N D  T H E  F I L M - T H I N N I N G  E Q U A T I O N  

The infamous intractability of the Navier-Stokes equations is further complicated in 
multi-phase problems, for the boundary conditions of continuity of velocity and viscous 
stress couple fluid motion across fluid interfaces, as does the pressure jump due to interfacial 
tension and surface curvature. The dynamics of the fluid motion are generally inextricably 
intertwined with the dynamics of the interface(s): the location and geometry of the boundary 
are neither fixed nor is their evolution in time known a priori ,  but instead they determine 
and are determined by the fluid motion of the contiguous phases. The crucial assumption 
permitting separate solution of the microflow and macroflow equations in coalescence is the 
quasi-static assumption, which rests firmly on the experimental fact that the final, rate- 
controlling stage of coalescence is drainage of a thin film of continuous phase (Mackay & 
Mason 1963; Reynolds 1881, 1886; Hartland 1970). The physical conditions of the drainage 
stage permitting simplification of the Navier-Stokes equations have already been discussed 
(Reed, Riolo & Hartland 1974), but the approximate uniformity in thickness does deserve 
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mention in the macroscopic context, for otherwise not only can the model of microflow 
fail, the macroflow equations can become (r, t)--partial, instead of ordinary, differential 
equations (Hartland 1969). 

Once the drainage stage of the overall coalescence process has begun, then, the time 
scale for fluid motion can be presumed distinct from that for approach of the drop to its 
homophase through the overall quasi-static behavior of the system. The time-dependent 
boundaries enter microflow equations and solutions only parametrically, and the micro- 
solutions--obtained for arbitrary (dynamic) pressure gradients--can be used in the 
derivation of the film-thinning equation from the macroscopic equations. The macroscopic 
equations, conservation of mass in the film and balance of forces on the drop, then close the 
circle by determining the pressure field in the film which opposes the applied force acting 
on the film. The procedure is as follows. 

The macroscopic balances expressing conservation of mass in the draining film and 
balance of forces on the drop under the stated conditions are 

and 

f ] "  = [I] 2rtr v, dz l~r2v 

f o  rl f = 2 n  (p  - p l ) r  dr ,  [2] 

in which v (= - a6/Ot)  is the rate of approach of one interface to the other, f is the force 
causing that approach (usually the resultant gravitational force from the drop weight less 
its buoyancy, =ApVg, but more generally including an applied force (Hartland & Wood 
1973)), rf is the radius to the perimeter of the draining film, and Ps is the pressure there. 

To deduce macroscopic motion from microscopic motion as expressed in the solution 
A v, ([23] of Reed, Riolo & Hartland (1974); see also [20]), it is simpler to use 

a dz LP- 1 fia dz [3] D r ~ 

which is compatible with the quasi-static conditions. The point is that the integrations on 
the left are difficult, at best, those on the right simple. The price to be paid is that expansion 
methods paralleling but differing from those by Reed, Riolo & Hartland (1974) must be 
repeated. 

The result of the calculation is the ordinary differential equation 

d6dt - AZpA8rcft [6 - 16t~/2~ {3)] - 3~f [u°6 - 2(Au)tl/22(1)]' 

I 2 A : ~r~, in which Au = 2uo - Vo - Vo, 

v~/2 ~ - - 1  2" [ 2n6 / 

- 12(va t )  '/21 

[4] 
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and 

E ( I }  __  

[(2n+ 2)6 / -,.3 ,, [(2n + 1)8/] 
- ( g -  1)?erfc t 2(vAt),/2 ] -- Z, eric / ~(VAt)~ ] ~ 

vl,,2 oc, [ R  l \ 2 n (  "1 [ 2n8 \ 

(R + 1)2 ~ o / ;  ; i) I (R + 1), erfc/2~v~l/2) 

.~ (2n + 2)6 
- (R - 1)~ erfc ( ~,st)1,2 ) zt"" 1 enc t ,  l(2n+l)8]2(VA{)i7~ j 

Equation [4] is not only nonlinear, it is nonautonomous, as well. Analytical methods can 
not be used, but machine computations for ranges of the physical parameters and initial 
conditions have been made and are plotted in dimensionless form in figures I-5. Equation 
[4] is made dimensionless in a natural manner upon inserting 

, 9 ' ,  12 
A = 8/~i,, 0 = trA/t 7 ,  F = .[~tiArA, U = Uot)'/v A, U = (Au)t:f,.'v A, 

but the equation need not be rewritten. 
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Figure 1. Effect of physical properties on film thinning for (a) F = 1 0 6 ,  (b) F = 0.1. 
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Figure 2. Effect of applied force on film thinning. 
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Figure 3. Effect of initial film thickness and applied force on film thinning. 
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Figure 4. Effect of initial circulation patterns on film thinning. 

Figure 4c. 
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F i g u r e  5, I n t e r a c t i o n  o f  t he  s e v e r a l  p h y s i c a l  effects.  

C u r v e  R F U L" 

1 O. 1 1() ~ - 5 0  - 4 0  

2 1.0 10 ~ 50 - 40 

3 1.0 106 - 10 - 30 

4 0. I 105 10 30 

5 1.0 105 0 50 

6 1.0 105 50 I00  

7 0.1 10 ~ - 50 - 100 

8 1.0 105 - 50 - 1 0 0  

9 10.0 10 5 - 50 - 100 

10 0. I 105 - 50 100 

11 10.0 106 - 50 - 100 

3. A S Y M P T O T I C  F O R M S  O F  T H E  F I L M - T H I N N I N G  E Q U A T I O N  

The analytical intractability of the full equation lends greater import to asymptotic forms, 
in addition to necessitating machine computations. The solutions E23]-[25] of Reed, Riolo 
& Hartland (1974) for the velocity profiles converge most rapidly for short times where, 
unfortunately, either the microscopic-macroscopic, step-by-step decoupling procedure or 
the assumed initial conditions are most open to question. The short-time asymptote leads 
to the following differential equation, 

d6 8rtJ'tF6 i3erfc(o)] _ 3~y [ ilerfc(o,~ 
dt - AzpAL -- 16tl/2 (R + 1)J u°6 -- 2(Au)tl/2 (R + 1)/ 
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- A~pA[ 3~ ','~ (R + l i  - u°6 zc '/2 (R + I ) ] "  [5] 

which  is n o n a u t o n o m o u s  a l t h o u g h  l inear.  If  r e -expressed  for c o m p a c t n e s s  in the  d i m e n s i o n -  

less fo rm 

in which  

dA 

dO 
- B ( 0 ) A  + C(O), [6] 

8F r0 ] 
B(O) = 3L~z + u 

16 , [(4 )1 
C ( O ) -  3~1: 2 ( R  + 1) ~ FO + U 0 v2,  

then  the  genera l  so lu t ion  (see, for example ,  H a r t m a n  1964; J e n s o n  & Jeffreys 1963; 

P o n t r y a g i n  1962) is 

A(0) = e x p [ - B z ( 0 )  l C(z)exp[Bz(T)] dz + A(o) , 

in wh ich  

BI(O) = B(z)  d z  = ~  ~ f O  2 + UO • 

Table 1. Initially quiescent film. 

[7] 

Case 1. U = O , U > O  A 
2 = O) (e.g. vo 1 < O, "o = vo 

A{O) 

Case 2. U =0,  U < 0  A 
(e.g. v~o > O, Uo = v 2 = O) 

Case 3. 

&(o', R 

U = U = 0. Family of curves degenerates to single, initially horizontal straight line for an initially 
quiescent system. In all three cases other effects come into play with passage of time 
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T a b l e  2, I n i t i a l l y  o u t w a r d  f i lm f low.  

C a s e  1. 

C a s e  2. 

C a s e  3. 

U > 0 ,  U > 0  

(e.g. u o = 0.5,  vo 1 < 0.9,  Vo 2 = 0) 
A 

A(0) 

U > 0 ,  U < 0  

(e.g. u o = 0.1,  Vo t > 0.2,  vo 2 = 0) 

A 

A ( O )  

o 

U < O , U = O  

(e.g. u o = 0.5,  t,~ = 1.0, vo 2 = 0) 

See r e m a r k ,  C a s e  3, T a b l e  1, b u t  n o t e  t h a t  h e r e  t h e  m e a n i n g  o f  U = 0 is t h a t  t h e r e  is in i t i a l  m o t i o n  

in a d j a c e n t  p h a s e s  c o r r e s p o n d i n g  t o  t h a t  in f i lm 

T a b l e  3. I n i t i a l l y  i n w a r d  f i lm f low.  

C a s e l .  U < O , U > O  a 

(e.g. uo  = - 0 . 5 ,  Vo' < - 1.0, vo 2 = 0) 

A(0) 

C a s e  2. U < 0 ,  U < 0  A 

(e.g. u o = - 0 . 5 ,  t,o 1 = +_0.1, v 2 = 0 

o r  a n y  v a l u e  o f  vo 1 s a t i s f y i n g  2 u  o < vlo) 

U < 0 ,  U = 0  
(e.g. uo = - 0 . 5 ,  vo 1 = - 1 . 0 ,  vo 2 = 0) 
See r e m a r k s ,  C a s e s  3, T a b l e s  1, 2, e s p e c i a l l y  2 

C a s e  3. 

A(ol 

"o 

1 i d o l  i l l  
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Table 4. Short- t ime behavior.  

Steady Transient  Reynolds '  Hydrodynamical ly  coupled 
Reynolds'  

2 
-8[FO/n + U/3]A + 2ct[2FO/g + U]01'2 -8[FO/n -.}- U/3]A + ~ [4FO/n + 0]01/2 FA 3 

3re / ~ + 1  

dA 
dO 

d2A __4/_FI2A, 
dO: 31r~ ] 

cc{UO- 1/2 + 6_x F01/2 - ~1i2U201/2 

50t ,UF03/2 -- ~2 F205/2} 
7~1/2 

+ 8{8[F0/~ + U/~] z - F/n}A 

~t {U O-'/z +6-FO'/2 ~UUO I/2 

~1/2 7~ 

+ 8{8[FO/n + U/3] 2 - F/rc}A 

Underl ined terms indicate dominance for very short  times: here, a = 16/3n 1/2. 

Unfortunately, the integrations are not readily carried out analytically; and although short 
time and exact solutions are compared for certain conditions in figure 4c but because the 
interplay of the several parameters can not be completely seen there nor understood from 
the general equation ([4]), further analysis is desirable. The results of the analysis for short 
times appear in tables 1-4 and are sketched in subsequent paragraphs. 

The differential geometry of the trajectories in the neighborhood of the origin provides 
considerable information about the nature of film-thinning in hydrodynamically coupled 
systems, in particular, the complex interplay of the physical properties, the initial thickness 
and flow conditions, and the applied force. The tangent to the trajectory is dA/d0, and the 
curvature is d2A/d02; a geometric interpretation of the second derivative (Morse & Feshbach 
1953) is that, if d2A/d02 < 0, then A(0) is larger than its arithmetic average taken on either 
side, [A(0 + dO) + A(0 - d0)]/2. Upon rewriting [6] as 

8 [ 
dO - 37r '/2 (R + 1) - UA g l / 2  (~ + i)J [8] 

the trajectory is seen to leave the origin (0 = 0) horizontally if there is no initial film motion, 
with negative slope if there is outward motion, and with positive slope if there is inward 
motion, independently of the other parameters of the problem: 

dA 
dO (0 = O) = - 8 U/3. [9] 

These initial slopes are indicated by dashed lines in tables 1-3. 
The full expression for the second derivative is more complicated, being 

dEA ~_ [ 8_ 0'/2 l 8_Fo[dA 4 0-'/27 8F dA 1 U0-'/2 l 
d 0 2 =  F A 3 ~ , / 2 ( R + 1 ) 3 -  n I_d0 3n'/2(R+I)J-3LUdo r c ~ 2 ( ~ D 3  ' [10] 

but for very short times it is dominated by 

d2A 
d0 2 ~ 8U/3(R + 1)(re0) l/z, [11] 

J.M.F., Vol. 1, No. 3--E 
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which is independent of the other parameters, in particular, U : U determines the direction 
of the initial trajectory, but U determines its curvature. The shorter the time, the greater 
the initial curvature; the more viscous the film relative to its surroundings (or, the larger R 
is), the less is the curvature; the greater the initial flow disparity (as measured by U), the 
greater the curvature. 

The effects for short times are sketched schematically in tables 1-3 and are largely self- 
explanatory. It may be noted, however, that R seems to play an ambiguous role, depending 
solely upon the initial flows: independently of initial film motion, an increase in R enhances 
early stages of thinning if there is reverse drop circulation, but retards thinning if there is 
normal (outward) drop circulation. The physical basis for this behavior is that momentum 
is transferred less easily from the drop to the film, so that initially, film-thickening ten- 
dencies are retarded, as are film-thinning ones, by increasing the film viscosity relative to 
surroundings. Regardless of this seemingly ambivalent role during early stages of thinning, 
of course, increased values of R are ultimately favorable to drainage and resultant film 
thinning. It may also be seen from tables 1-3 that initial motion in the contiguous phases 
dominates that in the film for very short times, in the sense that large values of the second 
derivative can quickly turn the trajectory, irrespective of the initial value of the first 
derivative. Quantification of this last argument may be seen in [9] and [11], which may be 
compared in table 4 with other short-time formulae available (e.g. Hartland 1972, Riolo, 
Reed & Hartland 1973). 

For slightly longer times, other effects come into play, necessitating consideration of 
equation [101. Although only U enters the equation for dA/d0, F, U and U enter the equa- 
tion for d2A/d0 2 after the initial moment, as does the initial thickness A (0 ~ 0). A qualitative 
analysis of [10] can be made, paralleling that of [l l l ,  and to that end [9] may be inserted 
into [10] to give 

 121 - - + F O +  U A +  
7r 2 3g 1/2 (R + 1) 

0 -  1/2 

(: 64o 
+ ~ -  FO+sU 3~r~U+3~W~/~Vj(R+I) [12; 

Assuming the validity of [12], we see that the first term may be positive or negative, depend- 
ing upon the initial film motion and how much time has elapsed, and that the second term 
has already been analyzed ([11]). Consequently, a consideration of the algebraic sign of the 
last term, together with a balance of the magnitude of it and the other two terms yields the 
desired arguments concerning early trends. 

A comparison with the time-dependent version of Reynolds' model (Riolo, Reed & 
Hartland 1973) reveals dramatic differences between even the qualitative kinds of behavior 
it exhibits vis g~ vis hydrodynamically coupled systems. A still sharper distinction is provided 
by the steady drainage model of Reynolds (Hartland 1967), for which 

dA/d0 = - (2/3r0FA 3 [ 13] 
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implies 

d2A/d02 = - (2/Tr)2F2A5/3. [ 14] 

The curvature is thus negative under all circumstances, the tangent inevitably downward 
The physical reason for similarities between the thinning results for Reynolds' time- 

dependent drainage model and the present model for very short times (table 4 and below) 
is that the former does introduce an effect due to initial film motion (including, in particular, 
the possibility of initial thickening) and that the latter shows little effect of motion in the 
adjacent phases because only negligible motion can have been initiated for very short times. 
For slightly longer times, of course, these models diverge, as seen by the differences between 
[8] and [10] or [12] and [15] and [16], which give the differential geometry of trajectories 
satisfying the time-dependent Reynolds' model for short times: 

dA/d0 = -8[(F/rt)O + U/3]A + 2~[(2F/zt)O + U]O 1/2, [15] 

6~ 
d 2 A / d 0 2  = o tUO-1 /2  _~ _ F01/2  _ (32o~/rc2)F205/2 _ 5(o~2/7~1/2)FU03/2 

7~ 

- ~2ztl/Zu201/2 + 8{8[(F/rc)O + U/3] 2 - F/rt}A, [16] 

in which ~ -- 16/3zt 1/2. 
For very short times the right side of [16] is dominated by UO- x/2~, precisely the result 

obtained for the coupled case upon setting U = 2U and passing to the limit R + 0 for the 
above-mentioned physical reasons--and only under these very special conditions. Even 
for small R, in other words, there are radical differences for slightly longer times between 
[8] and [10] or [12] and [15] and [16], and these differences tend to become the more pro- 
nounced the longer the time. According to Reynolds' steady model, there are even nonlinear 
contributions to the initial curvature from the film thickness, whereas the nonlinearities are 
in fact in the initial flows and the force, and in interactions between these effects. Table 4 
offers a ready comparison of the differential geometry of trajectories for each of the three 
models. 

With further elapse of time, other effects come into play and invalidate the foregoing 
asymptotic results, the interactions between parametrically described effects becomes more 
complex, and only the full equation, [4], provides an adequate description. After still further 
elapse of time, however, the long-time asymptote will be attained: 

dt vl/2pAA2 3-~f~(7[y~/2 L2R(ZtVAt)I/z 1 (Vo ~ + Vo 2) , [17a] 

which in dimensionless form is 

dO - 7 l  ' 3 / ~  - 3 [ 2 ( r c 0 )  1/2 U - 2R(ltO)l/2 + 1 (U - 2U) • [17b] 

Equations [ 17] are analytically intractable, and their numerical solutions may be compared 
with those of the full equation in figure 1, where slowly thinning films are seen to be approx- 
imated reasonably well for all time, although it is longer before the asymptotic solution 
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actually duplicates the exact, and where duplication occurs sooner for rapidly thinning 
films but where the departures are much greater for shorter times (cf. dashed and solid 
curves of figure 1 for R = 0.1, 10). There is, however, an important special case of [17b] 

1 2 which could represent a sheared system more generally which is separable, viz., Vo = - v o ,  

but which includes, in particular, an initially quiescent drop and homophase: 

dA I 8 RF01/2 4 R U  l 2 
d--O = - _  ~ 3 ( ~ ' 2 - J  A [18] 

The solution of equation [18] is 

1 1 _ 16 _ _  0o3,2) n t- _ _ 8  RU(01/2 - 01/2] [19] 
A Ao 3rt3/2RF( 03/2 3 g l / 2  - o  ~" 

The asymptotic behavior for long times, in contrast to all earlier models, indicates no 
steady-state drainage (Reed, Riolo & Hartland 1974), regardless of the time elapsed. The 
simple result for thinning according to Reynolds' model (table 4) (Hartland 1967; Riolo, 
Reed & Hartland 1973) is not easy to compare with the more complicated long-time 
asymptote ([17a, b]) because they are difficult to put on a common basis and because the 
coupled model can have reached a specified A for a given F at a specified 0 by any of an 
infinity of evolution curves, the Reynolds model but by one. Presuming the simplest of 
circumstances for the coupled model, namely equation [18], and taking U = 0 as well, 
thinning is inevitably more rapid according to a hydrodynamically coupled one, the ratio 
of the absolute values of the thinning rates being given by (12rr~/2)RO~/2/A, a quantity 
taking values of 102-104 and higher for A < 10 -2 and 10 -2 < 0 < 102. Thus, not only 
are thinning rates much higher than predicted by Reynolds' model for short and inter- 
mediate times (aside from early periods of thickening, of course) but for longer times, as well. 

Two other asymptotic forms based on physical properties are important, viz., films much 
more and much less viscous than contiguous phases. The former corresponds to 

l ira ~ I ( ~ ) 0 ( ~  2 (3)- A ) -  ~ ( U A - ~  2(1)01/2)1 

= - 8(FO/u + U/3)A, 

with the series ~131 and ~(~) expressed in dimensionless form; the solution of [20] is 

[20] 

A(0)/A(0) = exp{ - 8(FO/u - U/3)O} [21] 

by inspection. The latter, R -~ 0, corresponds to 

8 __ 2~Z(1)01/2), lim dA _ 8F 0(1601/2~(3 ) _ A) - ~ (UA [22] 
R~o dO 

which has been treated elsewhere (Riolo, Reed & Hartland 1973). The former is plotted in 
figures la, b, showing that certainly when R is larger than 5 0 -  and generally speaking, 
10 -  the infinite asymptote has been effectively reached. When R is smaller than 10 -2, 
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correspondingly, the null asymptote has effectively been reached, as may also be seen in 
figures la, b. 

The R -~ 0 limit has significance for systems with surface active agents present, for they 
tend to immobilize interfacial material. The R -~ oo limit also has meaning but at the 
opposite limit of resistance appropriate to clean interfaces in gas-liquid systems. The out- 
right assumption of inviscid surroundings embodies little physics but does not necessarily 
imply an infinite rate of drainage and concomitant film thinning, as the following estimate 
indicates. In consequence of the lack of resistance at the film boundaries and presuming a 
flat initial profile and stable flow, there will also be an absence of viscous action in the film. 
For quasi-static motion of both film and interfaces, the microflow satisfies 

pvr av,/t~r = - ~p/~r, 

with the macroscopic continuity equation, which yields 

vr = ( -  d6/dt)r /2& 

and the macroscopic force balance, 

f 
r = r f  

F = [p - p(rf)]2xr dr, 

implying 

A(0)/A(0)-- exp[ -4 ( f /~z ) l /20] ,  [23] 

in dimensionless variables. This result does not have an obviously incorrect parametric 
dependence, for the film thins with time and more rapidly for large F. It does not, however, 
thin rapidly enough with the time, nor do increases in F increase the rate of thinning as 
much as they should, according to [21]. Both these paradoxical tendencies may be viewed 
as consistent with the general principle that it matters where in an analysis an approximation 
is made and that mathematical operations do not generally commute. 

Of more practical interest is the case of comparable viscosities in both continuous and 
dispersed phases. The case R = l, moreover, permits one to avoid a number of mathe- 
matical difficulties to obtain 

38{ U A +  ( U ) O ' / Z [ i l e r f c { 2 ~ - - ~ } -  ~-~1/21}' [24] 

but the resulting simplified equation still is difficult analytically because of its nonlinearity. 

4. DISCUSSION OF RESULTS 

Fundamental to any broadly based or comprehensive study of coalescence is recognition 
of the wide variety of experimental behavior that occurs. The range, and therefore the 
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success, of a model must be measured by its predictions of this wealth of widely different 
experimental observations, both as regards qualitative processes and "events", and as 
regards quantitative detail and data. 

The present, hydrodynamically coupled model does indeed make a variety of predictions 
corresponding with experimental observations. In large measure this may be traced to the 
several possible effects incorporated in the model, each being represented by a parameter, 
but it is considerably more than a matter of having additional parameters available. Rather, 
the basic physics underlying drainage of a thin film between a drop and its homophase 
have been reasonably modeled. 

On the other hand, the presence of several parameters combined with the degree to which 
they range in nature does make exhaustive studies lengthy, as well as difficult, and their 
presentation prohibitive. In the following subsection concerning detailed comparisons of 
the theory with available quantitative experiments, an indication of the range of numerical 
values open to the physical parameters is given (see also tables 5a c), justifying the 
selection of values used in computations. Each physical effect is thus plotted for certain 
values of the remaining parameters, and figures 1 5 are then not consistent, in the sense that 
for a given liquid pair, for instance, all manner of situations have not been investigated, nor 
have all manner of liquid pairs been studied in a given situation. 

The special ingredient distinguishing the present model from earlier ones is the hydro- 
dynamic coupling between motion in the film and in the drop and its homophase, and the 
parameter characterizing that coupling is R. It alone appears explicitly in the film-thinning 
equation, in contrast to VB/V A and R, which both appear in the microsolution, and in con- 
trast to the total absence of other than film properties in earlier models. The effect of R on 
the underlying velocity profiles has already been discussed (Reed, Riolo & Hartland 1974), 
and its effect on the rate of film thinning is shown clearly in figures la, b: the more viscous 

Table 5a. Values of R for various liquids relative to water at 20 ° C (Weast 1971). 

p{g/cm 3) ~(cP) R R i Ref. 

Kerosene 0.813 2.4 1.40 0.72 (Perry 1963) 
Benzene 0.879 0.652 0.76 1.32 (Weast 1971 ) 
Toluene 0.867 0.590 0.72 1.39 {Weast 1971) 
Chloroform 1.49 0.58 0.93 1.07 (Weast 1971 i 
Ether 0.714 0.233 0.41 2,44 (Weast 1971~ 
Dibutyl phthatate 1.048 19.2 4.48 0,22 [Mackay 1963j 
Diphenyl sulfide 1.114 4.63 2,27 0.44 (Mackay 1963) 
Mercury 13,59 1.54 4.57 0.22 (Weast 1971 ) 
Liquid paraffin 0.876 140.0 11.0 0.09 {Hartland 1967) 
Castor oil 0.96 986.0 30.8 0.033 (Weast 1971) 
Carbon tetrachloride 1.594 0.969 1.24 0.81 (Weast 1971) 
Air 0.0012 0.0018 0.0015 675.0 (Weast 1971 ) 
Cyclohexanone* 0.946 2.01 1.29 0.77 (Weinstein 1973) 
Octanol* 0.831 7.43 2.62 0,38 IWeinstein 1973) 
Methylamyl acetate* 0.857 0.86 0.91 1.10 [Weinstein 1973) 
lsopropyl benzene* 0.856 0.72 0.83 1.20 {Weinstein 1973) 

* These values were measured after the phases had been saturated with one another (Weinstein 1973). 
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Table 5b. Values of R for liquids relative to 
glycerol at 200 C. 

R R -~ 

Liquid paraffin 0.25 3.95 

Kerosene 0.032 31.0 

Benzene 0.018 57.0 

Toluene 0.017 60.2 

Castor oil 0.71 1.41 

Table 5c. Values of R for liquids relative to golden 

syrup (Hartland 1967). 

R R - l  

Liquid paraffin 0.11 9.09 

Kerosene 0.013 75.0 

Benzene 0.0072 138.0 

Toluene 0.0069 146.0 

Castor oil 0.29 3.40 

the film relative to its contiguous phases, the more quickly it drains (Reed, Riolo & Hartland 
1974), and the more rapidly it thins. Dimensionless forces bounding those occurring in 
experimental and industrial practice were selected (F = 10-1,106), and an initially quiescent 
system was chosen to eliminate the effect of initial flow (U = U = 0). An increase in F 
under these conditions shifts the family of system - ( R - )  curves downward, but with a 
judicious (fortuitous) change in time scales they are remarkably similar; the dashed curves 
of figure la indicate the long-time asymptote, but there is no distinction between asymptotic 
and exact results for the weaker force of figure lb. 

That increases in F should not move the family of curves uniformly downward follows 
from the nonlinearity of the equation, but it would follow, as well, that F would generally 
enter the golution to even a linear equation nonlinearly. In addition to figures la, b, a com- 
parison of selected curves in figures 2, 4 and 5 provides a quantitative measure of the effect 
of F for selected circumstances, with the modifying role of initial flows indicated in figures 
4 and 5. 

The considerable early effect of varying the initial film thickness A(0), as well as F, is 
shown in figures 3a, b for the base system (cf. Section 4, Reed, Riolo & Hartland 1974), 
emphasizing again, incidently, the nonlinearity of the problem. 

A more pronounced, and indeed dramatic, effect is that of initial motion within the three 
phases displayed in figures 4a-c. Figure 4c has been plotted employing a different time 
scale to emphasize the curiosities of early stages of film thinning; asymptotic formulae [6] 
and [7] for short times are provided as dashed curves for comparison. Figures 4a and 4b 
have been separated, in turn, to show how F affects thinning for different initial conditions 
on the microflow. Not only is the whole family of trajectories depressed by increasing F, 
but in some situations where initially significant or only slight thickening occurs because of 
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initial reversed circulation in drop, film, and/or homophase, either slight or no thickening 
occurs when the applied force is increased. Consequently, the initial thickening and other 
phenomena arising from different initial microflows can be better seen in figure 4a than in 
figure 4b. For instance, reverse circulation in the drop, the film, or both ((U, U) = (100, 300), 
(0, 50), ( -50 ,  -90), ( -50 ,  -100)) leads to varying degrees of thickening before the inex- 
orable action of the force squeezing the film becomes dominant. If, conversely, initial 
circulation patterns are outward (see especially ( 5 0 , -  100), (0,-50)), then thinning is 
rapid from the start. The differences between thinning rates when initial circulation is in- 
ward and when it is outward are decided, but they correspond with experimental results 
(see, for example, Hartland 1970, 1972). 

Whereas the other parameters in the film-thinning equation are well defined, initial 
microflows are not. The dimensionless macroscopic parameters (U, U) are especially 
difficult to define when considered solely on the basis of the macroscopic equations. When 
the microscopic equations are considered, however, and when arguments are accepted, 
according to which comparable effects appearing in the dimensionless microscopic equa- 
tions ought to have comparable orders of magnitude, then (U, U) can be obtained through 

,2 0, then ,i 0, ,2 + 10-1 10 +1 using ry/A(0). Thus, if u o = 0, 0.5 and Co = vo = U o ,  U~,  U o "~ 

+0.1, ___0.5 implies values such as ( U , U ) =  (0,50), (50,100), ( - 5 0 , - 1 0 0 ) ,  (50,90), 
~1 ~2 ( -50 ,  -90), etc. The parameter pair (U, U) is completely defined by ( u  o ,  L,o, vo )  if r f  and 

A(0) are known, but the converse is not true, it should be noted; to each value of (U. U) 

,1 vo ). there corresponds an infinity of values of ( u  o ,  t, o , 

As the collision of drops in a shear flow is practically important, for instance, yet difficult 
theoretically, larger values such as (U, U) = (100, 300), ( -100,  -300) have been selected 
in order to get an engineering estimate of what happens in highly sheared systems which 

1 Vo z) (1, 1, 0), (1, - 3 ,  2), ( -  1, +3, 2), etc. to which might take on values like (Uo,  V o ,  = - 

there may correspond experimental results (Bartok & Mason 1957, 1959: Mackay & 
Mason 1964; Allan & Mason 1962). 

Although in more viscous systems the effect is tempered, drops often deform upon impact 
with the homophase interface, even though the latter is itself deformable and even though 
an eventual conformity of the overall geometry necessarily settles in. The inertial motion of 
the drop causing an outer torus of its fluid to sweep downward could imply a strong reverse 
circulation in the drop as an initial condition for the present model, although film flow 

,1 v S )  (1, - 2 ,0 )  yields could still be outward. Under these circumstances the case (Uo,  t o ,  " = 

(U, U) = (100, 400), the early stages of which agree well with what would be intuitively 
expected (figure 4c (100, 400), ( -100,  -300)). 

The foregoing descriptions and figures manifest most of the basic characteristics of thin- 
ning of a draining film, but by being abbreviated in number they fail to indicate the full 
spectrum of interactions of the several physical effects as they modulate the evolution 
curves. A more inclusive basis for developing physical intuition about these complex 
systems can be had from figure 5, where a diversity of situations appear. To be sure, they 
are not a complete two-dimensional representation of the multi-dimensional surface in 
parameter space. 
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Curves 1 and 2 show how sensitive trajectories are to the coupling parameter R for a 
system that is not initially quiescent. The reverse circulation is the same, as is the applied 
force, yet the film imbedded in less viscous surroundings (R = 10) thins rapidly and from 
the start, whereas the film imbedded in more viscous surroundings (R = 0.1) actually 
thickens at first. 

Curve 3, which shows the effect of different initial conditions on the same system as curve 
2, has been included in order that the two effects can be compared. Curve 3 may also be 
compared with curve 4, which shows that even though there is now outward film flow and 
weaker reverse drop circulation, the film initially thickens for a more extended period 
because the applied force is weaker. 

The difference between curves 5 and 6 is the enhanced thinning that takes place if the 
only initial motion is outward and is in the film instead of the drop. The remaining curves 
8-11 are for initially inward film flow of the same magnitude but in the presence of initially 
quiescent surroundings. Curves 7 and 8 have weaker overall reversed circulation than curves 
1 and 2, but 8 has a brief thickening period, in contrast to 2 (both have R = 1), because of a 
weaker applied force, whereas 1 has a thickening period instead of 7 because of the reversed 
circulation (here, R = 0.1). 

On the other hand, curves 6 and 7 are very similar despite large differences in every 
parameter. Because the surroundings for 6 are less viscous, it initially thins more rapidly 
(cf. [9] and [11], table 4, and associated discussion in Section 3), but in accord with the 
asymptotic results for long times, the larger force is the (slightly) dominant effect. 
Also in accord with the short and long time asymptotes, the increase in R from 8 to 9 for 
otherwise identical systems shows that for less viscous surroundings the film initially 
thickens more rapidly, but it also subsequently thins more rapidly. When curve 10 (R = 0.1 
but otherwise identical) is brought into consideration, the difference is even more significant 
as initial thickening is hardly perceptible. Curves 10, 8, 9 thus provide a nice demonstration 
of the effect of R on otherwise identical systems in which there is initially only reverse film 
flow. Curves 9 and 11 show the corresponding effect of increased force for a very viscous 
film, with 11 thinning more rapidly than all other curves because of the larger values of R 
and F, and with 9 thinning more rapidly than all other systems save 2 and 3, which have an 
order of magnitude greater applied force; although 9 thickens more initially and although 
its other circumstances are less favorable to thinning than, say, 1, 5-8, because its sur- 
roundings are less viscous, its trajectory crosses theirs as it thins more rapidly. 

Systems 2 and 3 thin as rapidly as 9, however, indicating comparable roles for R and F. 
Still more significantly, trajectories for pair 7-8 are very similar, with one having F an 
order of magnitude greater, the other having R an order of magnitude greater; the initial 
conditions are the same. Such arguments do not always transcend initial conditions, as a 
glance at pair 3-4 makes clear. 

System 10 should, and does, thin more slowly than the others in the set 7-11, but its 
trajectory may also be compared with the other systems having comparable values of R, 
viz. 1, 4, 7. Both 1 and 7 have larger forces and thin more rapidly than 10, with 1 slower than 
7 because of initially larger reversed circulation, yet 4 thins more slowly than 10 despite 
having an initially outward film motion because that drainage is weak and because there 
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is reverse drop circulation in 4 (albeit weak) and none in 10. This is also a valid generaliza- 
tion, although suffering the well-recognized fault of any generalization: initial motions in 
adjacent phases play a stronger role than comparable initial motions in films, the physical 
basis being the finiteness (indeed almost infinitesimalness) of the film versus the semi- 
infiniteness in extent of the surroundings. 

The dimensionless forces of figure 5 are admittedly large. If one presumes K 
(=--(6/VA}30(p/pa)/~r, (Reed, Riolo & Hartland 1974))~ 1, then for films in which 
A(0) ~ l0 -2, a value of 106 for F is reasonable. Such values can occur experimentally, 
and they do have the advantage that all scales are reduced and a variety of qualitatively 
distinct phenomena can be displayed in a single figure. In any event, and despite changes in 
parametric interactions that can take place, a reduction in F would yield qualitatively similar 
trajectories. A closer examination of even figure 5 yields more information than was 
described, but the foregoing nevertheless indicates the nature of the physical arguments 
and their associated machine computations. 

The film-thinning equation, [4] offers a bit more than routine numerical difficulty. 
More than being nonlinear and nonautonomous, both dependent and independent 
variables appear as arguments of repeated integrals of complementary error functions: 
there are, in turn, infinite series of these mathematical functions. For typical situations the 
subroutine calculations of i"erfc( ) were made to an accuracy of 10 -s.  The convergence 
of the series was then confirmed using the ratio test with smallness criterion of 10 -6 . 
Finally, the Runge-Kut ta -Gi l l  method provided the numerical solution, computed with 
an error criterion of 10 6. For small values of the time, the series converge quickly because 
the arguments of the i"erfc( )'s are large, regardless of n ( > 0). For intermediate and larger 
times, however, the arguments become smaller, and for an ever larger number of terms the 
i"erfc( )'s are not negligible. Nevertheless, so long as R is in the neighborhood of unity, 
the series converge quickly because of the factor (R - I/R + 1)2". 

The above were mentioned for subsequent users interested in calculating 6(0 curves for 
specific systems, for otherwise a number of errors can enter, not all of which are so easy to 
recognize as a negative film thickness. 

Comparison with experiment 

The foregoing necessarily incomplete if somewhat systematic presentation of general 
film-thinning behavior in hydrodynamically coupled systems is reinforced in this sub- 
section by a detailed comparison of specialized theoretical results with some relevant 
experimental results available in the literature (Hartland 1967; Mackay & Mason 1963). 
It is first helpful, however, to indicate the wide variety of two-phase systems occurring in 
nature, in industrial processes, and in laboratory research, in order to emphasize the 
extremes of parametric variation necessary to an exhaustive compilation of results showing 
the parametric dependence of film thinning in hydrodynamically coupled systems. 

That kinematic viscosities of physically quite disparate fluids can be similar despite con- 
siderably wider differences of density and dynamic viscosity is a fact already emphasized in 
basic fluid mechanics texts (Batchelor 1970). This statement provides a useful prefatory 
remark, for as mentioned earlier (Reed, Riolo & Hartland 1974) it is both parameters for 
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each of the fluids in the two-phase system which enter the boundary-initial value problem 
for the underlying hydrodynamics. In fact, they enter in the special form R = (Pa#A/pS#~) 1/2, 
and only in this form, in the film-thinning equation. If water is taken to be phase B, then 
(pB/2a) 1/2 = 1 g/cm 2 s 1/2, and R = (Pa#A) 1/2, with p in g/cm 3 and/~ in g/cm s. Conversely, 

if water is taken to be phase A, then R = (pB/~n)-1/2, using the same units. A number of 
fluids, most of which are immiscible in water, are tabulated in tables 5a-c. Even a super- 
ficial consideration of physical properties thus indicates a range of R from 10 -2 to 10 +2. 
It can be wider, if gas-liquid systems of still wider property differences are selected, but 
the point is already made: the sensitivity of film-thinning to small changes in R is com- 
pounded by the extremely wide range of values of R that occur. 

On the other hand, excepting the air-water system from table 5a for obvious fluid 

mechanical reasons and eliminating castor oil arbitrarily, the remaining values of R (by 
which we shall mean both R, R-1) are roughly bounded in a definite, and significantly 
smaller, band: 10-i  < R < 10 ÷ 1. The computational range of the preceding subsection 
was selected on the basis of this physical range of two orders of magnitude. If glycerol or 
golden syrup are substituted for water, then much wider ranges of R occur, but extremes of 
behavior due to extreme values of the physical properties cannot be modeled accurately, in 
general, because there can be drop deformation and oscillation of drop and homophase 
interfaces due to inertial effects on the one hand, or there can be such large differences in 
the transport properties in the two fluids that they are, in particular, not described well by a 
relatively simple drainage model such as ours. 

The dimensionless gravitational force impressed upon the film depends upon physical 
parameters and drop dimensions, being given by F = gVAp/pAv ~. V can range through 
10-1-1 cm 3 and Ap from 10-1 to 8 • 10- 1 g/cm 3, with p varying from 0.75 to 1.5 in liquid 
systems, but the greatest potential variation comes through 10 - 2  < v a < 10 2, roughly. 
Consequently, F can range from fractional values.to 10 6, e v e n  in liquid-liquid systems. The 
situation is still worse in gas-liquid systems, despite the occurrence of smaller drops, for 
Ap/pa can easily be 102 or higher. 

Dimensionless initial velocities can also range widely and are, moreover, more difficult to 
estimate in the macroscopic equations. In the microscopic equations, however, it can be 
argued (Reed, Riolo & Hartland 1974) that u ought not to range more than an order of 
magnitude or so on either side of unity, else the boundary value problem has not been made 
dimensionless properly, or it is not appropriate to the drainage of thin films (see also remarks 
in preceding subsection). For instance, although an estimate of film flow based upon flow 
already existing in a thin film between immobile interfaces could be as low as  10 - 6 ,  SDCh a 
low value would be inconsistent with the remaining terms in the microscopic description. 
Worse, that would exclude the very effects which it is the purpose of the present mc~del to 
describe, viz., initial and other transients occurring during drainage, on the one hand, and, 
on the other, those inherently inertial effects to which the model approximates despite their 

occurring before the drainage stage during approach or afterwards if strong reverse circula- 
tion occurs (Hartland 1970). More reasonable values of(u o , Vo ~, Vo 2) ~ +_ 0.1, _+ 1.0 correspond 
to values in the range U, U ~ + I0 ° - _+ 10 3 through the f a c t o r  ( 6 / r f )  2 ,~ 10 - 1  - 10 - 3  

by which the two sets of dimensionless variables differ. 
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As a final precaution, it may be mentioned that the dispersion of first one, then the other, 
fluid of a pair does not lead to a reciprocal system, despite the fact that the values of R are 
reciprocals of one another. Even if drop sizes are regulated to insure the same applied force, 
the film properties utilized in nondimensionalizing the applied force and the time are not 
the same. In order to arrive at more readily comparable systems, it may be easier to employ 
the same fluid as continuous phase but select a pair of fluids of greater and lesser viscosity 
to generate (at least approximately) reciprocal values of R for equivalent dimensionless 
forces and time. 

In figures 6-9 the theory may be compared with experimental data (solid curves) taken 
from the two sets of quantitative experiments available in the literature that are concerned 
with the approach of a drop to its homophase (Hartland 1967; Mackay & Mason 1963). 
Experimental thinning curves reflecting obvious asymmetries, nonuniformities and prema- 
ture coalescence have been excluded, but a variety of data remain valid. The theoretical 
curves have not been calculated according to the exact equation ([4]), for that is expensive 

--especially when the parameters U and U are unknown and these dimensions of parameter 
space must be searched. Moreover, satisfactory to excellent results have been obtained 
presuming U 4: 0, U = 0 in the long-time asymptotic formula ([17]), and hence the full 
calculational procedure can not be justified. The initial thickness and times are experi- 
mentally ambiguous but have not been manipulated; calculations were initiated from the 
raw experimental values. 

For liquid paraffin films draining between golden syrup phases, R = 0.11. In the upper 
curve of figure 6, a 0.1 ml drop implying F = 16 shows good agreement for all but the early 
stages of drainage if one assumes (U, U) = (-0.175,  0). A five-fold increase in drop size 
- - a n d  hence F can be predicted still more accurately if, as seems reasonable intuitively, 
the reverse circulation is doubled; in this case, agreement extends to the earliest stages of 
drainage that could be experimentally recorded. 

For a 0.5 ml glycerol drop approaching its homophase through liquid paraffin, for which 
R = 0.39 and F = 54, no value of U such that U = 0 gave better than satisfactory agreement 
(figure 7t, but for the still larger values ofR ( = 2.27) of figure 8, good agreement was achieved. 
By using very small water droplets (3.2.10 _4 cm 3) to decrease the applied force (F = 18.7) 
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Figure  6. C o m p a r i s o n  of theory and exper iment  (Har t l and  1967) for F = 16, 80; R = 0.11. 
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Figure 7. Compar i son  of theory and experiment (Hart land 1967) for F = 54; R = 0.39. 
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Figure g. Compar i son  of theory and experiment (Mackay 1963) for F = 18.7; R = 2.27. 
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F i g u r e  9. C o m p a r i s o n  o f  t h e o r y  a n d  e x p e r i m e n t  ( M a c k a y  1963)  for F = 0 .43;  R = 4.49.  



460 X. B. REED, JR., E. RIOLO a n d  s. HARTLAND 

in the face of the decreased viscous resistance of the continuous phase of diphenyl sulfide, 
sufficiently low thinning rates could be experimentally recorded. The several theoretical 
curves indicate the relative sensitivity of even the asymptotic equation with U = () to the 
rate of circulation. 

The good agreement for all drainage phases of the water-diphenyl sulfide system could 
not be achieved if the continuous phase was made more viscous. Substituting dibutyl- 
phthalate gave an R of 4.49, and although F was only 0.43, the water-dibutylphthalate 
system of figure 9 only shows adequate agreement. Perhaps the remaining disparities of 
figures 7 and 9 could be removed by employing the exact equation and by removing the 
remaining experimental uncertainties--initial thickness, time, and flow in all three phases 

to justify the lengthier calculational procedures, but better agreement should probably 
not be expected on the present basis. The excellent agreement of figures 6 and 8, however, 
should by no means be presumed spurious. 

5. C O N C L U S I O N S  

The present model of film-thinning is grounded in certain qualitative experimental 
observations--a thin, approximately uniform film that drains relatively slowly and in the 
known hydrodynamic boundary conditions applicable at clean fluid-liquid interfaces 
which provide for hydrodynamic coupling of contiguous phases. It is not surprising, then, 
that this model correctly predicts a wide range of qualitative experimental observations 
including film thickening and enhanced film thinning due to circulation in contiguous 
phases, that it provides for correct dependence of thinning on physical properties in all 
phases, and that it agrees satisfactorily with precise quantitative experimental data for 
well-defined, clean systems. 

Among the qualitative predictions may be included the following. Initial drainage of the 
film enhances film thinning, as does normal circulation in the drop. Conversely, reverse 
circulation in the drop or initially inward film flow causes thickening, an effect that is more 
pronounced the weaker the applied force. Because the volume of the drop and its homo- 
phase are virtually infinite relative to that of the film, initial motion in the drop or its homo- 
phase are more significant than initial film flow. For shorter times, initial thickening is less 
pronounced in systems having higher values of R, and yet initial thinning is not enhanced for 
increased R Ultimately, of course, the film thins more rapidly the greater the value of R. 
This conclusion stands in sharp contrast to the earlier presumption growing out of 
Reynolds' model, according to which a reduction in film viscosity alone would lead to more 
rapid drainage and increased film thinning rates. 

Other, more detailed, conclusions appear earlier in the article, either where derived or 
where computed (see especially Section 4). The most important conclusion, however, may 
be the most obvious one: the fact that there can be hydrodynamically coupled motion in 
the phases adjacent to the film at all has greater significance for drainage and film thinning 
than the implications of detailed situations and particular values of the parameters 
characterizing these newly modeled physical effects. 
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The quantitative predictions must be treated more carefully, for initial film thicknesses 
and associated initial motion in the three phases are difficult to determine experimentally 
and to characterize theoretically, as are film dimensions (r:) which enter the dimensionless 
formulation. Nevertheless, by presuming reasonable values, a number of different physical 
systems for which quantitative data are available have been satisfactorily represented by 
the model. Extremes of parametric values do lead to difficulties, of course, as do transparently 
highly nonuniform or asymmetrically draining films. Moreover, films that initially thicken 
appreciably will generally not remain sufficiently uniform in thickness, so that quantitative 
agreement should not be expected in such cases. 

Most of the limitations of the theory, rooted in turn in the model, are clear upon even a 
cursory glance, yet are all considerably more difficult to oorrect than to detect. The approx- 
imate uniformity of thickness and axisymmetry of drainage are easily delineated photo- 
graphically. Clean interfaces are considered relatively easy to insure by modern standards 
of research in interfacial phenomena. In clean systems, however, the greater the density 
difference, the shorter the drainage period and the more inertial effects will come into play. 
Depending upon the surface tension, there can be strong oscillations at the interface when 
the drop arrives, and compounding difficulties still further would be associated--and 
strongly coupled--anharmonic oscillations of drop shape. By consideration of more viscous 
systems, inertial effects can be minimized experimentally, even though they can not readily 
be incorporated and analyzed theoretically. Very thick films of high curvature can not, of 
course, be described by the model, but the thinner the film, the less will be the effect of 
curvature and the more reasonable becomes the planar model. 

The coupled, penetration aspect of the model and the uniformity of initial flows are the 
least justifiable of the assumptions. The latter can be corrected at considerable expense 
calculationally but with probably minimal effect practically; although easy enough in 
principle, the increased labor can certainly not be justified until initial flows can be accurately 
enough measured by as yet undesigned experiments. The semi-infinite extent of the con- 
tiguous phases, typical of engineering research, suffers obvious criticisms. In particular, it 
seems reasonable to conjecture that drop circulation could turn upon and reinforce both 
itself and film drainage, if film motion were strong enough and if the drainage stage lasted 
long enough, but this can be modeled only by drops which are finite in extent. Research on 
geometrically sounder models is under way. 
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Sommaire--Le taux d'amincissement d'une pellicule prisonni+re entre une goutte approchant son 
homophase selon un mod61e incorporant un accouplement hydrodynamique est dramatiquement 
diff+rent de celui de mod+les pr6c6dents non accoupl6s. Les implications d'amincissement de 
pellicule de micro-6coulements analyses dans Fexpos6 pr6c6dent sont 6tudi6es ici par des m6thodes 
analytiques semblables pour d6river une ~quation d'bvolution non-autonome non-tin6aire pour 
l'6paisseur de pellicule qui a 6t6 r6solue numeriquement sous une vari6t6 de conditions apr+s 
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extraction du comportement  analytique asymptotique. La force appliqu6e qui presse la pellicule 
ainsi que le mouvement  initial darts les trois phases d~termine le taux d 'amincissement  de pellicule 
de fa~;on compliqu6e par le param6tre d 'accouplement  R = (papA/pB#8) 1/2. Les observations 
exp6rimentales selon lesquelles la circulation normale d 'une  goutte facilite l 'amincissement alors 
que la circulation invers6e d 'une  goutte cause l '6paississement sont th6oriquement pr6vues pour la 
premi6re fois. Les pellicules bien plus visqeuses que leur environnement  s 'amincissent plus rapide- 
ment  que dans le cas oppos6. C'est  une conclusion contraire ~ l ' intuition mais d6montr6e exp6ri- 
mentalement;  les deux classes de syst6mes se comportent  diff6rement, souvent de fagon quantitative, 
selon les pr6dictions de syst6mes hydrodynamiquement  d6coupl6s, et les taux d 'amincissement  en 
particulier sont  g6n6ralement plus rapides du fait de la moindre resistance au drainage, bien que la 
limite de disparition de R recouvre le cas sp6cial du module de Reynolds. Pour les courtes p6riodes, 
il est analytiquement montr6 que les pellicules s 'amincissent plus rapidement s'il existe un mouve- 
merit initial vers l'ext6rieur de la pellicule et une circulation normale de la goutte, mais l'efficacit6 
d6croissante fi mesure que R s'accroit, contrairement ~ l'effet de R pour les p/:riodes interm6diaires 
et plus longues; s'il existe initialement un mouvement  de la pellicule vers l'int6rieur la tendance 

l '6paississement est accrue par une circulation invers6e de goutte mais avec une efficacit6 d6crois- 
sante ~t mesure que R s'agrandit.  Ces conclusions et d 'autres d6tiill6es, la plupart th6oriquement 
pr6vues pour la premi6re fois, ne sont pas seulement en accord qualitatif avec les observations 
exp6rimentales, mais en accord quanti tat if  avec les donn6es disponibles. 

Auszug--Die  Abnahmegeschwindigkeit  eines Films, der zwischen einem Tropfen eingeschlos- 
sen ist und welchersichseiner Homophase  n/ihert, ist gemiiI3 einem Modell, welches hydrodyna- 
mische Kopplung enthfilt, ganz bedeutend von frfiheren, ungekoppelten Modellen verschieden. Beg- 
leiterscheinungen fiir F i lmabnahme yon Mikrost r6mung,  welche in dem vorangegangenen Bericht 
analysiert wurden, werden hier mit / ihnl ichen analytischen Methoden untersucht,  um eine nicht 
autonome,  nicht lineare Evolutionsgleichung fiir die Filmdicke abzuleiten, welche zahlenm/iBig 
unter  verschiedenen Bedingungen gel/Sst worden ist, nachdem asymptotisches analytisches Verhalten 
extrahiert worden war. Die beim Pressen des Films verwandte Kraft  best immt zusammen mit der 
anf'~inglichen Bewegung der drei Phasen auf  eine komplizierte Art durch den Kopplungsparameter  
R = (pa#A/p~#B)l"2,die Geschwindigkeit der Fi lmabnahme.  Es werden experimentelle Beobach- 
tungen zum ersten Mal theoretisch vorausgesagt,  dab normale Tropfenzirkulation abnahme 
steigert, wiihrend umgekehrte Tropfenzirkulation Z u n a h m e  verursachen kann. Es wird festgestellt, 
dab Filme, die viel viskoser als ihre Umgebung  sind, schneller diinner werden, als im umgekehrten 
Fall, ein Schlul3 im Widerspruch mit  spontaner,  unmittelbarer Anschauung,  aber experimentell 
begrtindet. Beide Systemklassen verhalten sich verschieden, oft qualitativ, aus Voraussagen von 
hydrodynamisch entkoppelten Systemen, und besonders sind Fi lmabnahme geschwindigkeiten 
wegen geringeren Widerstandes gegen Abfliessen des Filmes gr6Ber, obwohl die Grenze des versch- 
windenden R den Spezialfall des Reynolds'  Modells wiedererwirkt. Es wird gezeigt, daB, analytisch, 
Filme fiir kurze Zeiten schneller diinner werden, wenn anf'~inglich eine Filmbewegung, nach 
augen gerichtet, und normale Tropfenzirkulation besteht, aber mit abnehmender  Wirksamkeit  
bei Erh6hung von R, im Gegensatz zu der Wirkung von R fiir Zwischenzeiten und liingere Zeiten. 
Wenn anffAnglich Filmbewegung, nach innen gerichtet, besteht, werden Neigungen zur Zunahme  
durch umgekehrte Tropfenzirkulation vergr6Bert, jedoch mit abnehmender  Wirksamkeit  bei 
Vergr613erung von R. Diese und andere, in Einzelheiten gehende Schliisse, welche meistens zum 
ersten Mal theoretisch vorausgesagt werden, s t immen nicht nur  qualitativ mit experimentellen 
Beobachtungen tiberein, sondern s t immen mengenm/il3ig mit vorhandenen Daten iiberein. 

Pe31oMe--Cropocxb pa3)KnxeHn~l n~qeHKH y~oaJleHHOfi Me)K~y ran:Iefi, npn6mDralome,~c~ K 
caoefi roMoqba3e cor~acHo MOJae~H BK,qioqa~oI~e.~ rn£tpo/IHnaMnqecroe a3aHMolleficTane, OqeHb 
OT~HtIaeTc~t OT paHHHX HecBfl3aHHbIX Mo;Ie.qeI4. Pa3XH)KeHHe IIJleHKH MHKpOTeqeHH~, 
aHaJln3npoBaHHoe B npe~lM;iylliefi pa60Te, ncc~te~lyeTcfl 311ecb nocpe~aCTBOM nol106HblX me 
aHa.~HTqeCKHX MeTO~OB iI.rI~l HO.rlyqeHHfl HeaBTOHOMHOFO He.rlHHe~Horo ypaBHeHH~I pa3BltTBfl 
TO.I IZIHHB1 IUIeHKH, KOTOpOe qHC.IIeHHO pa3pema~ocb npH pa3HblX yc.qoBnflX IlOCae 9KCTparnpOBaHnfl 
aCHMHTOTHqeCKOFO aHaS~HTHqeCKOFO HOBe~eHHfl. CnJta, c-a(HMalomag H.IIeHKy, BMeCTe C I4CXOIlHBIM 
riepe~lan}KeHneM B Tpex qba3ax, oripellestfleT CTeneHb pa3xg~eHHn HJleHKH C.rIO)KHBIM Cl]OCO6OM 
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nocpeJlCTBOM napaMeTpa B3aHMollefiCTBR~ R = ( D A [ 2 A / D B I 2 B )  1 /2  . Bnepabte noc~e 

3KCHepHMeHTaJIbHblX na6zro~eHHfi npe~cKaaano,  qTO HOpMa~bHaR KarleJlbHa~ t m p K y a s t t a s  

yCH~eT pa3~rDKenHe, a TO BpeMfl KaK o6paTHa~ t t a p r y a a a a a  raneJ1b MO~eT noBecTri K cryrdleHrlro, 

Hatu~n, qTO IUIeHKtt 60aee  Ba3KHe, qeM o K p y ~ a r o m a a  c p e a a  p a 3 ~ r ~ a r o T c a  6blcvpee, qeM MeHee 

a~3Krle r[~eHKH,--3aK~oqeHHe npoxrlBopeqatuee HHTyHt~HH, HO O6OCHOBaHHOe na 9rcnepriMeHTaX. 

O 6 a  Kaacca CHCTeM Be~yT ce6fl pa3YlHqHO, qacTo KaqeCTBeHHO, H3 npeilcKa3aHnfi a ~ a  CHCTeM C 

FH2IpOJlHHaMHqeCKtt ttapyllleHHO~ CBfl3blO B Oc06eHHOCTH CKOpOCTI4 pa3~14~eHHfl I1YleHOK 

npOHCXO~aT 6blCTpee BcJIe~CTBHe MeHbllaeFo CoIIpOTHBJIeHH~ CBO6021HOMy CTeKaHHrO, XOTa. 

npe~e~ Hcqe3arottlero R cnacaeT cneu~HaJ1bHbI~ c~yqafi  Mo21eaH Pefiuo~h£ta.  AHahHTHqecKn 

n o r a 3 a a o ,  '~TO n~eHra  pa3x~r~aroTcfl 6blCTpe~ B KopoTrHe IlpOMeXXyTKH BpeMeHrt, e c r u  nx 

HCXO~HOe nepe~avt~eH~e Hanpaa3eHHO Hapy~y  H npOHCXOaHT nopMa~bna~  ~a~e3bHafl 

unpry~flUH~, nO no Mepe nOabltHeHH~ R C tlOHrDKa~ou2e~cfl 9~blJ~eI(THBHOCTblO, B KOHTpaCT 

BO321e~CTBHIO R ~2JIfl HpoMe~yTOqHOFO H ~IHTe~IbHOFO BpeMeHH : ec~Iri )Ke HCXO~HOe nepeaBrt~eHne 

n~eHrri HaHpaB,qeHo BHyTpb, TO TeH~teHHHfl r cryuleHHrO ycn:~BaeTc~ o6parrto~i tlrtpKys]flu~e~ 

~ane~b, n O H ~ a ~  9(I)qbeKT!~BHOCTb !4 HOBbI1Ha~I R. ~)TI4 !d ~pyr~e  ~(leTa~]bHble 3aK3qIoqeH!4~l. 

~OJqblMI4HCTBO H3 KOTOpblX TeOpeT~qecKH npe~cKa3aHo B rlepBbI~ pa3 He TO3IbKO Kaqec~BeHHo 

COBt~a~la~oT C 3KCHepHMeHTa~bHblMH Ha6~O~eHt4~M~, HO ~ qHC,qeHHO C !dMeI~IlI/4MHC~I f~aHHblMl4. 


